Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides.

نویسندگان

  • E L Macfarlane
  • A Kwasnicka
  • R E Hancock
چکیده

Resistance to the polycationic antibiotic polymyxin B and expression of the outer-membrane protein OprH in the opportunistic pathogen Pseudomonas aeruginosa both involve the PhoP-PhoQ two-component regulatory system. The genes for this system form an operon with oprH, oprH-phoP-phoQ, that responds to Mg(2+) starvation and PhoP levels. In this study, the Mg(2+)-regulated promoter for this operon was mapped upstream of oprH by primer-extension experiments. An oprH::xylE-Gm(R) mutant H855 was constructed and measurement of the catechol 2,3-dioxygenase activity expressed from this transcriptional fusion provided evidence for a second, weak promoter for phoP-phoQ. Wild-type P. aeruginosa PAO1 strain H103 was found to exhibit Mg(2+)-regulated resistance to the alpha-helical antimicrobial cationic peptide CP28 in addition to its previously characterized resistance to polymyxin B. Resistance to this peptide was unchanged in the OprH-null mutant H855 and a PhoP-null mutant H851. In contrast, PhoQ-null mutant H854 demonstrated constitutive CP28 resistance. Northern blot analysis revealed constitutive expression of phoP in this strain, implicating PhoP-PhoQ in the resistance of P. aeruginosa to cationic peptides. Furthermore, all three null-mutant strains demonstrated increased resistance to the aminoglycoside antibiotics streptomycin, kanamycin and amikacin. Two additional mutant strains, H895 and H896, were constructed that carried unmarked deletions in oprH and were found to exhibit aminoglycoside susceptibility equivalent to that of the wild-type. This result provided definitive evidence that OprH is not involved in P. aeruginosa aminoglycoside resistance and that the changes in resistance in strain H855 and a previously reported oprH mutant were due to polar effects on phoP-phoQ rather than loss of OprH expression. A role for PhoP-PhoQ in resistance to aminoglycosides is envisaged that is distinct from that in resistance to cationic peptides and polymyxin B.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa.

The two-component regulatory system PhoP-PhoQ of Pseudomonas aeruginosa regulates resistance to cationic antimicrobial peptides, polymyxin B and aminoglycosides in response to low Mg2+ conditions. We have identified a second two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides. This system responds to limiting Mg2+, and is affe...

متن کامل

Adaptive resistance to the "last hope" antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS.

As multidrug resistance increases alarmingly, polymyxin B and colistin are increasingly being used in the clinic to treat serious Pseudomonas aeruginosa infections. In this opportunistic pathogen, subinhibitory levels of polymyxins and certain antimicrobial peptides induce resistance toward higher, otherwise lethal, levels of these antimicrobial agents. It is known that the modification of lipi...

متن کامل

Contribution of the PhoP-PhoQ and PmrA-PmrB Two-Component Regulatory Systems to Mg -Induced Gene Regulation in Pseudomonas aeruginosa

When grown in divalent cation-limited medium, Pseudomonas aeruginosa becomes resistant to cationic antimicrobial peptides and polymyxin B. This resistance is regulated by the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems. To further characterize Mg regulation in P. aeruginosa, microarray transcriptional profiling was conducted to compare wild-type P. aeruginosa grown under Mg -limite...

متن کامل

Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa.

When grown in divalent cation-limited medium, Pseudomonas aeruginosa becomes resistant to cationic antimicrobial peptides and polymyxin B. This resistance is regulated by the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems. To further characterize Mg(2+) regulation in P. aeruginosa, microarray transcriptional profiling was conducted to compare wild-type P. aeruginosa grown under Mg(2+)...

متن کامل

The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ.

While the MerR-like transcriptional regulator BrlR has been demonstrated to contribute to Pseudomonas aeruginosa biofilm tolerance to antimicrobial agents known as multidrug efflux pump substrates, the role of BrlR in resistance to cationic antimicrobial peptides (CAP), which is based on reduced outer membrane susceptibility, is not known. Here, we demonstrate that inactivation of brlR coincide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 146 ( Pt 10)  شماره 

صفحات  -

تاریخ انتشار 2000